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ABSTRACT 

  When faced with an uncertain network, travelers adjust departure time as well as 

route choices in response to real-time traveler information.  Previous studies on 

algorithm design focus on adaptive route choices and cannot model adaptive 

departure time choices (DTC).  In this thesis, the optimal adaptive departure time 

and route choice problem in a stochastic time-dependent network is studied.  

Travelers are assumed to minimize expected generalized cost which is the sum of 

expected travel cost and arrival delay costs. The uncertain network is modeled by 

jointly distributed random travel time variables for all links at all time periods. Real-

time traveler information reveals realized link travel times and thus reduces 

uncertainties in the network.  
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The adaptive departure time and route choice process is conceptualized as a 

routing policy, defined as a decision rule that specifies what node to take next at 

each decision node based on realized link travel times and the current time. Waiting 

at origin nodes is allowed to model DTCs that are dependent on traveler 

information.  Departure time is a random variable rather than fixed as in previous 

studies.  A new concept of action time is introduced, which is the time-of-day when 

a traveler starts the DTC decision process.  Because of the efforts involved in 

processing information and making decisions, a cost could be associated with a 

departure made after the action time.   

An algorithm is designed to compute the minimum expected generalized cost 

routing policy and the corresponding optimal action time, from all origins to a 

destination for a given desired arrival time window. Computational tests are carried 

out on a hypothetical network and randomly generated networks. It is shown that 

adaptive DTCs lead to less expected generalized cost than fixed DTCs do.  The 

benefit of adaptive DTC is larger when the variance of the travel time increases.    

The departure time distribution is more concentrated with a larger unit cost of 

departure delay.  A wider arrival time window leads to a more dispersed departure 

time distribution, when there is no departure penalty.   

Key Words: Adaptive, Departure time choice, Real-time travel information 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

When faced with an uncertain traffic network, travelers usually shift their DTCs. 

Some travelers make changes based on their day-to-day experience, while others on pre-

trip information, which can be received through internet or radio. We want to study the 

whole process of travelers’ trip decision from home to destination, including when to 

depart and which road to take in response to online information. One of the most common 

assumptions is that users of the transportation network choose a route which minimizes 

the cost of travel. In this thesis, we only focus on the demand side of the traffic model, 

where we assume that individual choice will not affect the traffic network.  

When uncertainties exist in traffic networks, it is necessary to choose an objective that 

accommodates this stochasticity. Arriving on time is always an indispensible 

consideration. Thus, minimizing expected travel time only as a proxy for cost is not 

enough, especially for those who have rigid time budget. They cannot afford being late. 

On the other hand, an early arrival will also result in inconvenience. Therefore, we 

consider applying arrival penalty as the terminal cost to capture reliability requirement.  

Travelers generally implicitly place monetary values on time spent on travel and the 

early and late arrival delays.  The value of a unit of travel time is usually different from 
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that of a unit of early or late arrival delay. In this thesis, the generalized cost of a trip is 

defined as the sum of the values a traveler puts on the travel time, early and late arrival 

delays.  Travelers are assumed to minimize the expected generalized cost when making 

departure time and routing decisions.  

With the growing prevalence of intelligent transportation systems (ITS) 

infrastructure that allows users to learn information about network conditions as they 

travel (for instance, from observing travel times on a variable message sign (VMS) or 

through an in-vehicle device), it is not only useful for transportation models to be able to 

account for the ability of users to update their routing decisions using information learned 

en route, but also the ability to make departure time adaptive. For instance, if a traveler 

receives information indicating that his or her intended route has a much higher cost than 

anticipated (such as in the case of a severe incident on that route), one would expect the 

traveler to choose a different route or different departure time. People can get the 

information by searching real-time information online at home, and then shift their 

departure time to avoid traffic jam or reported incident on the route.  Once the traveler is 

en route, s/he might continue receiving real-time information based on which s/he adapts 

the route choices. We study how the adaptive DTC will benefit travelers compared to fixed 

DTC, both with succeeding adaptive routing choices.  

In this thesis, we model travelers’ DTC in response to real-time information, termed 

as adaptive DTC, in a stochastic time-dependent network. This is the first algorithmic 
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study on optimal adaptive DTC.  We consider the whole decision process, thus action time 

is introduced to describe the time when travelers start to make decisions. Note that action 

time is not necessary the departure time.  

 

Thus, the motivation of this work is threefold: 1) we seek a routing algorithm that 

introduce adaptive DTC in arrival penalty problem and that also allows for the routing 

decision to be altered en route as travelers take advantage of information learned 

regarding the future state of the network; 2) We want to study the characteristic of 

departure time distribution, 3) and how adaptive DTC benefit travelers under uncertain 

traffic network. 

1.2 Organization  

Chapter 2 surveys relevant literature in reliable routing problem and DTC model. Chapter 

3 provides a framework of optimal adaptive departure time and routing choice and 

discusses in detail adaptive DTC in contrast to fixed DTC. An algorithm is presented to 

find an optimal policy minimizing the expected generalized cost. Chapter 4 carrys out 

computational tests to study the effectiveness of designed algorithm and also the value of 

adaptive DTC.  Chapter 5 gives the conclusion and also provides the future direction.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

This thesis studies optimal adaptive departure time and route choice with real-time 

information considering reliable arrival time.  Thus, this chapter describes existing 

research which is relevant to the problem at hand. 

The reviews are divided into two categories. We first discuss research pertaining to 

DTC. It is followed by a review on routing algorithm considering travelers’ reliability, 

including a description of routing algorithms incorporating online information access. This 

chapter concludes with a brief summary of the contributions of this thesis. 

2.2 Departure Time Choice Model 

Departure time choice model is a growing interest over the years. It is due to a need 

to avoid increasing congestion levels. There are varied researches dealing with DTC 

problem, including the empirical study and evidence pertaining to departure time 

characteristics and travelers’ response to uncertain travel time and analytical studies 

seeking the relationship between departure time and travel time distribution.  
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Some previous studies relevant to DTC focus on factors that affect trip makers’ 

departure time, and how these factors affect those people with different socioeconomic 

characteristic, e.g., income, age, trip and purpose.   

Small (1) develops a multinomial logit model of arrival times of car commuters in the San 

Francisco Bay Area. The results indicate that people are willing to shift their schedules by 

one or two minutes earlier if they saved some travel time. (2) employes another approach 

for studying the variables that affected an individual’s likelihood to shift departure times. 

He uses a Poisson regression formulation to model how often commuters change routes 

and departure time per month. They model route choice and departure time separately 

based on the survey data conducted from morning work trip commute in the Seattle. The 

results indicate that the travel time on the most often used route and variable work time 

influenced the frequency of departure time changes. (3) also models morning commute 

departure time for workers in Singapore using multinomial logit and nested logit models. 

The results suggest that persons engaged in business were less likely to change their 

departure time. Commuters earning less than $200 or greater than $1799 per month 

seemed less likely to change their departure time. All the previously mentioned studies 

use discretized departure times; however there has been some exploration into using 

continuous departure time. (4) uses a joint discrete/continuous method to model the 

decision to delay departure to home from work in order to avoid congestion. A discrete 

model is used for the decision of whether or not to delay departure, and then the duration 
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of the delay was modeled using a continuous Weibull survival function. They come to the 

conclusion that traffic system characteristics dominated the delay decision while the 

socioeconomic characteristics and the characteristics of the area near the work location 

have a lesser impact. Noland and Small (5) develop an analytical model demonstrate the 

affect of travel time uncertainty on DTC and expected travel cost.   

With the advent of advanced traveler information systems (ATIS), travelers will have 

access to real-time information about network conditions, which potentially change the 

way that travelers perceive actual travel time. For example, radio and real-time online 

traffic resource will have impact on trip-makers departure scheduling. Therefore the study 

pertaining how ATIS impact on travelers’ DTC is an active research in recent years. (6) 

addresses departure time and route switching decisions made by commuters in response 

to ATIS. It is based on the data collected from an experiment using a dynamic interactive 

travel simulator for laboratory studies of user responses under real-time information. 

While travel times may be uncertain, these simulations emphasize how people learn about 

the shape of the congestion profile as opposed to uncertainties due to non-recurrent 

events. The literature on traveller response to congestion and ATIS (e.g., (7), 

8),(9),(10),(11),(12),(13)) suggests that the most common response to (information about) 

congestion is to change departure time, although changing routes also occurs frequently. 

Jha (14) develops a Bayesian updating model to capture the day-to-day travel time 

learning mechanizing, where the information is provided by ATIS or previous experience. 
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This observation partly motivates the study on joint departure time and routing choices in 

this thesis. The propensity of travelers to switch departure time increases if more complete 

information is provided regarding both individual and system level and information is 

more specific: quantitative instead of qualitative, predictive instead of descriptive. (15) 

develops an analytical dynamic mixed-equilibrium model to describe the transportation 

system performance with routing guidance system. In this paper, we focus on deriving 

traveler’s adaptive DTC.  

Although the literature we described above modeling the DTC with the responds to real-

time information, there are some significant differences in the information context we 

study. First of all, most of the studies are discussing DTC based on day-to-day learning. In 

the light of the information from experience or ATIS, travelers adjust their departure 

scheduling to maximize travel utilities. However, in this thesis, travel time information is 

provided, which is a final state. The learning process is within-day adaption. In this case, 

DTC could be adaptive regarding the reveled travel time information up to current time. 

Some studies also investigate the same information context as this thesis did. However, 

either they deal with the marginal travel time distribution, which unable to model 

adaptive choice or they study adaptive route choice on the dependency of joint link time 

distribution only but not pertaining to departure time problem. We will further discuss 

these studies in the next chapter.   
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2.3 Reliable Routing Problem 

Traffic networks are inherently uncertain with random disruptions which create 

significant congestion, such as crashes, vehicle breakdown, weather, special events, 

construction and maintenance activities. Travel reliability therefore becomes a significant 

determinant in travel choices, especially for trips where arrival penalties exist, e.g. an 

important interview or catching a flight.  Abdel-Aty et al. (15) suggest that travelers are 

interested in not only travel time saving but also reduction of travel time variability, which 

is the uncertainty for exact arrival time at destination. Thus, it is considered as an added 

cost to a traveler making a trip.  Recker et al. (16) further uncovers the contribution of 

travel time reliability and variability in different risk-taking behavior. The results show 

that the reliability is indispensable in route choice.  Liu et al. (0) find that the estimated 

value of travel-time reliability is significantly higher than that of travel-time.  However not 

all evidences suggest risk-averse in travel choices.  For example, Avineri and Prashker (0) 

find that in some cases, increasing travel time variability of a less attractive route could 

increase its perceived attractiveness. They suggest that it might be explained by the payoff 

variability effect: high payoff variability seems to move choice behavior toward random 

choice.  

With the advent of advanced traveler information systems (ATIS), travelers will 

have access to real-time information about network conditions, which potentially could 

help travelers achieve more reliable travels. For example, a variable message sign (VMS) 
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could inform the traveler of an incident on a downstream freeway link, and the traveler 

could avoid it by taking an earlier exit.  In order to assess an ATIS, a comprehensive model 

is needed to take into consideration the demand-supply interaction under the influence of 

ATIS (0).  This papers deals with the demand side of the problem, which describes the 

optimal reliable departure time and routing decisions a traveler could make with the help 

of real-time information.  We focus on algorithms that calculate optimal or near-optimal 

routes in an uncertain network with reliability measures considered.  

2.3.1 Routing Algorithm considering Reliability 

The literature on reliable routing in random networks can be roughly classified into 

four categories.  The first category includes works from earlier days, where the focus is on 

the properties of shortest paths in a random network, rather than a path that optimizes 

some measure of reliability.  For example, Frank (21) investigates the probability 

distribution of the cost of the shortest path in networks with stochastic arc costs, while 

Sigal et al. (0) examine the probability that a particular path is the shortest.   In the second 

category, utility functions are used and the expected utility maximization criterion of von 

Neumann and Morgenstern is applied.  Loui (0) and Eiger et al. (0) show that if and only if 

the utility function is affine linear or exponential, dynamic-programming type algorithms 

can be used.  Tsaggouris and Zaroliagis (0) study a more general situation where the path 

cost is non-additive such that dynamic programming is not applicable.  They consider the 

case of a non-linear convex and non-decreasing function on two attributes.  The third 
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category deals with travel time variance directly.  Sivakumar and Batta (0) solve a shortest 

path problem with the constraint of maximum allowable variance of travel time.  Sen et al. 

(0) solves a series of parametric integer programs to generate efficient paths regarding 

both expected and variance of travel time, where arc costs are normally distributed and 

correlated.  Gao (0) presents a heuristic for finding adaptive routes with minimum 

variance in a network with general discrete link travel time distributions and general 

information situations.  The fourth category uses terminal cost to capture travel reliability 

requirements where usually there is a desired arrival time at the destination.  de Palma et 

al. (0) design an algorithm for finding paths that minimize a linear combination of travel 

time and early and late schedule delays, which is the difference between the actual and 

desired arrival times.  The problem is shown to be NP-hard.  Bander and White (0) study a 

routing problem in a time-dependent random network with a terminal cost as a function 

of actual arrival time, and an efficient heuristic is designed.  Fan et al. (0) present an 

approach where the probability of arriving at the destination later than a specified target 

arrival time is minimized.  Boyles (0) uses a polynomial function for the terminal cost. 

 

2.3.2 Reliable Route Choices with Information Access 

Most of the works described above assume non-adaptive route choices, i.e. travelers 

are assumed to follow a fixed path and do not respond to real-time information, with the 

exception of (0), (0) and (0).  Adaptive routing algorithms in both static and dynamic 
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stochastic networks have been studied (see e.g., 0,0,0,0,0,0,0,0), however only a limited 

number of them  consider reliability.  Independent link travel times and arrival-time only 

information are assumed in (0) and (0). Limited spatial and temporal dependencies and 

information on links just traversed are assumed in (0). 

 

2.4 Contributions  

Based on the literature review, this paper contributes to the knowledge base of DTC in the 

following aspects: 

• A framework is established for the optimal adaptive departure time and routing 

choice problem based on generic terminal costs with stochastic dependency of link 

travel times. The departure time is a random variable rather than fixed as in previous 

studies.; Computational evidences are provided to show the value of adaptive DTC in 

decreasing generalized travel cost.  
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CHAPTER 3  

ALGORITHM DOT-REL 

3.1 Problem Definition  

3.1.1 Network 

Let )
~

,,,( CTANG =  denote a stochastic time-dependent (STD) network. N is the set 

of nodes and A is the set of links, with nN =  and mA = . There is one single destination 

node d.  There is at most one directional link from node j to k, and such a link can be 

denoted as ( )kj, . The set of all downstream nodes of node j is denoted as A(j). T is the set 

of time periods {0, 1, …, K-1}. A support point is defined as a distinct value (vector of 

values) that a discrete random variable (vector) can take. Thus a probability mass function 

(PMF) of a random variable (vector) is a combination of support points and associated 

probabilities. In this paper, a symbol with a ∼ over it is a random variable (vector), while 

the same symbol without the ∼ is its support point. The travel time on each link ( )kj,  at 

each time period t is a random variable tjkC ,

~
with finite number of discrete, positive and 

integral support points.  Beyond time period K-1, travel times are static, i.e. travel times on 

link ( )kj,  at any time t > K-1 is equal to that at time K – 1. {C1, …,CR} is the set of support 

points of the joint probability distribution of all link travel times at all times, where rC is a 

vector of time-dependent link travel times with a dimension K× m, r = 1, 2, …, R.  r
tjkC ,  is 

the travel time of link ( )kj,  at time t in the r-th support point, with a probability pr, and 
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1
1

=∑
=

R

r
rp . Under any support point, there is at least one path with finite travel time 

connecting any node to the destination node.  Assume the traveler can make the decision 

at each node on what node to take next. A node can be used as both an intermediate or 

origin node.  Waiting is allowed at an origin node, while at an intermediate node, waiting 

is not allowed. We use jo to denote node j used as an origin node.  

 

3.1.2 Routing Policy 

The information obtained during the decision process is represented by event 

collection, EV, defined as the set of support points with the same link travel time 

realizations as observed.  In other words, the traveler cannot distinguish between support 

points in an EV based on the available information.  As more information is obtained, the 

size of EV will decrease (or remains unchanged) and the traveler is more certain about the 

network. Ultimately the traveler might obtain a singleton, at which time the network 

becomes deterministic.  The composition and evolution of EV generally depend on the 

trajectory of the traveler up to the current time and node (0). 

The routing choice is made based on the current state x = {j, t, EV}, where j is the 

current node (origin or intermediate). At the origin node, travelers can decide whether to 

depart (and go to a downstream node) or wait for one time period depending on the 

information on traffic conditions. If the traveler decides to wait, at the next time period 
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s/he could be faced with a number of different event collections, each with a certain 

probability. The traveler could then again decide to stay or depart based on the newly 

acquired information. Since the departure time depends on the network conditions which 

are randomly distributed across different days, the departure time itself is also a random 

variable.   

There is a higher level decision to make: the time to start the DTC decision process.  

This quantity is defined as the action time.  Unlike the departure time, the action time is 

determined a priori without real-time information.  The departure cannot happen before 

the action time.  If there is no waiting cost, it is straightforward to set the action time at 0 

so that all the possible departure times can be considered.  Because of the efforts involved 

in processing information and making decisions, a unit cost could be associated with 

waiting at the origin. In this case, if a traveler chooses an early action time, s/he will have a 

large set of departure times to choose from, yet the potential waiting cost could be high; if 

s/he chooses a late action time, s/he will have a small set of departure times to choose from, 

yet the potential waiting cost could be low.   

At an intermediate node, waiting is not allowed, since it is generally not possible to 

wait at an intersection of a transportation network at one’s free will.  and a decision on 

what node to take next is made based on the current state.  Upon the arrival at the next 

node k, the traveler will be in a new state (j, t’, EV’) based on which another decision will 

be made. The process will continue until the destination node is reached.   
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A fixed DTC situation (with adaptive routing decisions) can be modeled by 

forbidding waiting at the origin node. In this case the departure time is a deterministic 

value and non-adaptive to real-time information.  The action time is then identical to the 

departure time. In this thesis, the adaptive departure time and route choice process 

together is conceptualized as a routing policy. a routing policy µ is defined as a mapping 

from optimal action time for each node to decisions on the next node

)(,},,{);(,},,{: jBkkEVtjjAkkEVtj o ∈∈ aaµ .  

The adaptive departure time and route choice process together is conceptualized as 

a routing policy. A routing policy µ is defined as a mapping from all states to decisions on 

the next node }{)(,},,{);(,},,{: jjAkkEVtjjAkkEVtj o ∪∈∈ aaµ .  

We study the problem of finding the minimum expected generalized cost routing 

policy from all possible initial states to the single destination node, where the traveler has 

perfect online information (POI), that is, at any time t, the traveler knows the realizations 

of all link travel times up to t. POI is available for example from advanced in-vehicle 

communication systems.  Results from POI also serve as benchmarks of performance for 

other imperfect online information situations.  The reader is referred to (0) and (0) for a 

comprehensive discussion of information access.  The output from solving the problem is 

an optimal routing policy, which gives the minimum expected generalized cost from each 

state to the destination.  The optimal action time can be obtained by post-processing the 

optimal routing policy   
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3.1.3 Adaptive vs. Fixed DTC 

With adaptive DTC, the departure time is a random variable rather than fixed, 

depending on the network conditions that have been revealed during their departure 

making process.  Therefore, travelers who follow an adaptive departure rule make 

decision online and start with different departure time each day. In contrast, travelers who 

follow a fixed departure time making decisions a priori, regardless of the network 

conditions before trips. A traveler can still make use of online information en route, and 

will end up with different set of links depending on revealed information. However, the 

performance of fixed DTC can be arbitrarily worse than the adaptive one. 

In this section, we use one illustrative example (Figure 3-1) to show the difference 

between a fixed and an adaptive DTC. The network in Figure 3-1 has two support points 

of link travel time distribution, where M is a very large integer and thus larger than 10 

minutes. We can view M as resulted from an incident which causes significant traffic jam. 

Time unit is minute. There is only one O-D pair, and we set desired arrival time at 7:30. 

Arrivals later than 7:30 will result in penalties. Penalty is increasing as the late minutes 

increase. Assume that every one minute late will result in 1$. For instance, in the morning 

commute trip, getting late for work is not appreciable and could result in the loss of 

productivity and poor evaluation from the manager. A traveler is assumed to have  POI, 
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and could simply observe the network to find the optimal route choice for departure time 

7:00 and 7:10 respectively, because the minimum O-D travel time is 20 minutes. We 

present the optimal routes with adaptive and non-adaptive DTC in a time-space network 

(Figure 3-2 and 3-3). Time is shown along the vertical axis (the time axis), and the node 

symbol is shown along the horizontal axis (the space axis). Each point in this network 

represents a node-time pair (j, t) under support point C1 or C2, and any link between (j, t1) 

and (k, t2) indicates that link (j, k) has a travel time of t2 −t1. Destination node with doted 

circle indicates that t is far away from 7:30.  

On departure time 7:00, the mapping between OD is to take a-b with travel time 30 

minutes in support point C1 and c-d with 20+M minutes in C2. The expected travel time to 

depart on 7:30 is x(10+20)+y(10+10+M). We multiply expected travel time with the value of 

time 0.5$/min and plus the late penalty will get the expected generalized cost from 

departure time 7:00, 0.5[x(10+20)+y(10+10+M)]+y*1*(M-10). When departure time is 7:10, 

the optimal routing policy is to take a-b under C1 with travel time 30+M and c-d under C2 

with 20 minutes travel time. Expected travel time from departure time 7:10 is 

x(20+10+M)+y(10+10) and expected generalized cost is 

0.5[x(20+10+M)+y(10+10)]+x*1*(10+M). The difference of expected generalized cost 

between two departure time is (0.5(x(10+20)+y(10+10+M))+ y*1*(M-10))-

( 0.5(x(20+10+M)+y(10+10))- x*1*(10+M)). Therefore, if x>y, 7:00 is the optimal action time 
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and departure time for fixed DTC, otherwise when x<y, 7:10 will be the optimal action 

time. When x=y, there is indifferent between two departure time. 
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Time Link C1 C2 

7:00 

a 10 20 

b n/a n/a 

c 20 10 

d n/a n/a 

7:10 

a 20 10 

b 20 10+M 

c 20 10 

d 10 10+M 

7:20 

a 20 20 

b 10+M 30+M 

c 10 10 

d 30+M 10 

Figure 3-1 Adaptive vs. Fixed DTC Network 

O D  

S1 

S2 

a b 

c d 

Joint Distribution 

(p1= x, p2=y=1-x) 
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From the time-space network, we can tell no matter which time we depart, it is always 

possible to encounter significant traffic jam and result large expected generalized cost. 

However, if we combine adaptive route choice with adaptive DTC, the performance will 

be always better than fixed one, because travelers can use the information to determine the 

departure time. Dotted line connected (O,7:00) and (O,7:10) is an imaginary link indicated 

traveler can stay at home for 10 minutes. In this case, we assume there is no cost associated 

with waiting at home. When under support point C1, the optimal routing policy is to 

depart at time 7:00 and take a-b, While under C2, it is to depart at 7:10 and take c-d. 

O 

D  

S1 

7:00 

7:10 

7:20 

7:30 

S2 

D  

7:00 

7:10 

7:20 

7:30 

10(C1) 

20(C1) 20(C2) 

10+M (C2) 

7:00 

7:10 

7:20 

7:30 

O 

S2 

D  

10(C2) 

10(C2) 

S1 

D  

20(C1) 

10+M (C1) 

Figure 3-2 Optimal Routing Policies with Fixed DTC in Time-Space Network 
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O 

D  

S1 

7:00 

7:10 

7:20 

7:30 

7:00 

7:10 

7:20 

7:30 

10(C1) 

20(C1) 

O 

S2 10(C2) 

10(C2) 

Figure 3-3 Optimal Routing Policy with Adaptive DTC in Time-Space 

Network 
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The tables below summarize the travel time and expected generalized cost from adaptive 

and fixed DTC.   

POI with adaptive DTC 

         

EV 
Departure Time Route Choice 

Travel  Time 

(min) 

Expected Generalized Cost 

($) 

C1 t = 0 a-b 30 15 

C2 t = 1 c-d 20 10 

 

POI with fixed DTC  

If x > y 

 

EV 
Departure Time Route Choice 

Travel  Time 

(min) 

Expected Generalized Cost 

($) 

C1 
7:00 

a-b 30 15 

C2 c-d 20+M 0.5*y(10+10+M)]+x*1*(M-10) 

If x < y 

 

EV 
Departure Time Route Choice 

Travel  Time 

(min) 

Expected Generalized Cost 

($) 

C1 
7:10 

a-b 30+M 0.5*x(20+10+M)+ x*1*(10+M) 

C2 c-d 20 10 

 

Table 3-1 Results from Adaptive DTC vs. Fixed DTC 

3.2 Algorithm Design 

3.2.1 The Optimality Condition 

We seek to achieve reliability of the trip to a given destination node d by 

introducing a general arrival penalty function );( θdtp , where θ  is a vector of parameters, 

including the desired arrival time t*. The polynomial arrival penalty function studied in (0) 

is thus a special case. We also introduce departure delay to reflect the fact that disutility is 
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incurred when a traveler needs to leave later than the desired departure time.   It is 

assumed that a traveler minimizes the expected generalized cost which is a linear 

combination of expected departure delay cost, travel time cost and arrival penalty (see a 

similar argument in (0)).   

Bellman’s principle of optimality applies to the minimization of travel disutility due 

to the additivity of the cost function. Let  ),,( EVtjVµ  and ),,( EVtjV o
µ  be the expected 

generalized cost to destination node d from the state {j,t,EV} by following routing policy µ 

when j is an origin and intermediate node respectively.  and ����� is the optimal action 

time at the origin node. The optimality conditions for � and � are listed as follows.  

(1) 
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



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(3) 

 

 ����� � arg min��������������, �, �����
 

 

 

 



www.manaraa.com

24 

 

∀j∈N\{d},∀t, ∀EV, with the boundary conditions: );(),,(),,( ** θµµ tpEVtdVEVtdV o == , 

dEVtdEVtd o == ),,(*),,(* µµ , ∀t, ∀EV.  α and β are nonnegative weights for travel time 

and departure delay respectively. 

3.2.2 Algorithm with Perfect Online Information 

Under perfect online information, the set of possible event collections at time t, EV(t), 

can be generated in an increasing order of time.  At each time t, each element of EV(t-1) is 

partitioned into disjoint subsets based on all link travel times at time t, such that in each 

subset, all support points have the same link travel times at time t for all links, and any 

two support points from two different subsets do not have all the same link travel times at 

time t.  Since the element of EV(t-1) is the result of successive partitions up to time t-1, the 

above operation will result in EV(t).  At time K-1, each event collection contains exactly 

one support point and the network becomes deterministic and static. The statement of the 

process is as follows.  

 

Generate_Event_Collection 

 D = {{C1, …,CR}} 

For t = 0 to K-1 

       For each arc (j, k)∈A 
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  For each disjoint set S∈D 

1. w = number of distinct values among Crjk,t, ∀r∈ S; 

2. Divide S into disjoint sets S1’, S2’, …, Sw’, such that Crjk,t is constant 

over all r∈Si’, i = 1, …, w and 
SSi

i
='

U
; 

3. D � D \ {S}U { S1’, S2’, …, Sw’}; 

       EV(t) � D; 

 

With POI, tjkC ,

~
 in Equation (1) can be replaced by a fixed value tjk ,π  which is the 

observed travel time on link (j,k) at time t.  Equation (1) can be written as 

(4)       








++=

++=

∑

∑

+∈

+∈∈

)},,(,)|'()',1,(min{),,(

},)|'()',,({  min),,(

*
)1('

*

)('
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)(
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,

EVtjVEVEVPEVtjVEVtjV

EVEVPEVtkVEVtjV

tEV
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tjk

µµµ

π
µµ

β

παπ

EV

EV
 

where ∑∑
∈∈

=
EVr

r
EVEVr

r ppEVEVP
∩'

)|'(  is the conditional probability of the next event 

collection. 

We choose schedule delay as the arrival penalty, defined as the difference between 

the desired arrival time and the actual arrival time. We distinguish between early schedule 

delay and late schedule delay. Let ]*,*[ ∆+∆− tt  be the desired arrival time range. Any 
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arrival times fall out of this time window will receive penalties. If the arrival time is t, 

early schedule delay is )*,0max( tt −∆− , and late schedule delay is max ))*(,0( ∆+− tt . The 

travel time, early and late schedule delays are converted to monetary costs by multiplying 

them by their respective unit cost. The unit costs for early and late schedule delays are  γ 

and η respectively, where generally  γ <η (0).  

We design an algorithm DOT-REL based on the optimality conditions.  Note that 

the evaluation of ),,(* EVtjVµ  only depends on )',',(* EVtjVµ  from a later time t’ > t, due to 

the positive and integral link travel time assumptions.  Therefore DOT-REL is a label-

setting algorithm working in a decreasing order of time, and the links can be scanned in an 

arbitrary order during any time period. At time K-1 and beyond, we can use any 

deterministic static shortest path algorithm to compute ),,(* EVtjVµ , ∀j∈N, ∀t≥K-1, 

∀EV∈EV(K-1).  The statement of Algorithm DOT-REL follows, where ),,(* EVtjeµ  is the 

expected travel time of routing policy µ*, ),,(* EVtjesµ  the expected early schedule delay, 

),,(* EVtjlsµ  the expected late schedule delay. 

 

Algorithm DOT-REL 

Initialization 

Step 1:  Initialization at the destination 
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   EVt

dItdItd

EVtdlsEVtdesEVtdVEVtdV

ttEVtdlsttEVtdesEVtde

o

o
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==

+==

∆+−=−∆−==

,

,),,(*),,(*

),,(),,(),,(),,(

))*(,0max(),,(),*,0max(),,(,0),,(

****

***

µµ

ηγ µµµµ

µµµ

 

Step 2:  Compute time bound )*,1max( ∆−−= tKt
)

 

Beyond this time bound, the network will become deterministic and there will be 

no early schedule delay, and only late schedule delay. Thus travelers will follow the 

shortest path to the destination and not stay at origin node.  

Step 3:  Initialization beyond time bound t̂  

Compute ),ˆ,(* EVtjeµ , )1(, −∈∀∈∀ KEVNj EV  with a static deterministic shortest path 

algorithm (e.g. Dijkstra’s) 

 ttKEVNj

EVtjlsEVtjeEVtjVEVtjV

tEVtjetEVtjlsEVtjes
o

ˆ),1(,

),,,(),ˆ,(),,(),,(

)),*(),ˆ,(,0max(),,(,0),,(

****

***

≥∀−∈∀∈∀

+==

∆+−+==

EV

µµµµ

µµµ

ηα

. 

Step 4: Initialization before time bound t̂  

 
)(,ˆ},{\

),,(),,( **

tEVttdNj

EVtjVEVtjV o

EV∈∀<∀∈∀

+∞== µµ  

 

Main Loop 
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For 1ˆ −= tt down to 0 

      For each EV∈ EV(t)  

       For each arc Akj ∈),(  

         ∑
+∈

++=
)('

,*,

,

)|'()',,(
tjktEV

tjktjk EVEVPEVtkVtemp
π

µ παπ
EV

 

                           If ),,(* EVtjVtemp µ<  

    tempEVtjV =),,(*µ  

kEVtj =),,(*µ  

),,(),,( ** EVtjVEVtjV o
µµ =  

   ),,(*),,(* EVtjEVtjo µµ =  

       For each node j∈N 

        
∑

+∈
++=

)1('
* )|'()',1,(

tEV

o EVEVPEVtjVtemp
EV

µβ
 

               If ),,(* EVtjVtemp o
µ≤  

tempEVtjV o =),,(*µ  

jEVtj o =),,(*µ  

For each node j∈N     (To find optimal action time ω) 
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 min_time = +∞ 

For 1ˆ −= tt down to 0 

 If 
tempEVtjV o =),,(*µ  

),,(min_time * EVtjV o
µ=  

tj =)( 0ω  

 

Following a similar analysis as in (0), we can derive that Algorithm DOT-REL has a 

complexity of O(mKRlnR + R×SSP) and Ω(mKR + R×SSP), where SSP is the complexity of 

the static deterministic shortest path algorithm.  This algorithm is strongly polynomial in R. 

R could be an exponential function of mK.  If the link travel times are highly correlated, we 

expect that R is much less than YmK, where Y is the maximum number of support points for 

a single link travel time. Algorithm DOT-REL is exact and can serve as a benchmark for 

checking the performances of approximation algorithms that can be used in practice. 
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CHAPTER 4  

COMPUTATIONAL TESTS 

4.1 Objective 

In this section, we plan to compare adaptive DTC and fixed DTC with perfect online 

information and two other adaptive and non-adaptive routing methods. The objectives of 

the computational tests are threefold: 1) to demonstrate the benefit of adaptive DTC over  

fixed DTC with POI, 2) to study how the departure time distribution change with system 

parameters, such as unit departure penalty and allowable arrival time window and 3) to 

study the effectiveness of Algorithm DOT-REL over two approximation algorithms. Based 

on the study of D.B Lee (45)on USA project,, the monetary value of travel time (VOTT) for 

passenger cars drivers in the information age ranges from 8-40$/hr. In this paper, we 

choose 30$/hr as the value of travel time. In the algorithm, we use minute as the time unit. 

Therefore, the unit cost for travel time is 0.5$/min. We further assume that the unit cost for 

early and late schedule delays is 0.25$/min and 1$/min respectively.  These values are 

consistent with those in (43) after the normalization with respect to travel cost.   

4.2 Computational Test Design 

Our tests are designed to be carried out in two parts: the first on a hypothetical 

network with detailed distribution results; and the second on randomly generated 
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networks to obtain a high-level understanding of the performances of Algorithm DOT-

REL, CE and NOI as functions of some system parameters. 

First of all, we want to compare adaptive DTC verse fixed DTC. Although these two 

algorithms both have adaptive route choice mode, waiting at the origin node is forbidding 

in the fixed DTC model. The results in fixed DTC are from the optimal departure time. To 

find this priori value in the algorithm, we seek the minimum expected generalized cost 

among all departure time, and then fixed that time periods to be the departure time.  

Secondly, verse two approximation algorithms, the certainty equivalent (CE) and no 

online information (NOI).  The CE approximation replaces every link travel time random 

variable by its expected value.  Thus the network becomes a deterministic dynamic 

network. Any deterministic dynamic shortest path algorithm can be used to obtain a path 

that minimizes the disutility function.  The path is then executed in the original stochastic 

time-dependent network to obtain the needed summary statistics.  As the complexity 

analysis states in last section, Algorithm DOT-REL cannot be applied to large-scale 

networks because of the potential high running time. CE however is very efficient. Thus, it 

is interesting to study the tradeoffs between effectiveness and efficiency by comparing 

results from Algorithm DOT-REL and CE.   

The NOI approximation works with the marginal distributions of link travel time 

instead of joint distributions, where the current information component of any state is an 

empty set. Routing decisions also only depend on the current node and the current time, 
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and the current information can actually be ignored in the algorithm design. Traveler’s 

knowledge about the network remains the priori distribution of link travel time, because 

either the link travel time is statically independent and information obtained can’t help 

predict future, or they got no en route information access. Theoretically, the NOI 

approximation is the simplest in terms of adaptive routing algorithm design with on-line 

information, due to the lack of current information. It is therefore the basis for the study of 

more complicated approximation in terms of dependence on information accessibility. 

Furthermore even though it is the simplest, it suffices to show some of the implications 

and significance of stochasticity in a dynamic context for traffic models. Practically, though 

the performance of NOI as an approximation can be arbitrarily worse than optimal, it does 

can serve as a good approximation to POI when the stochastic dependency of link travel 

times is weak. Computationally, the NOI variant can be solved in polynomial time. This is 

a very desirable result. Therefore NOI can be used as an approximation to more 

complicated approximations. Note that NOI performance can be either better or worse 

than CE for given network. An intuitive argument is that both the NOI approximation and 

the CE approximation are working on joint distributions different from the original one. 

Which one leads to a travel cost farther from the optimal solution depends on the data. 

For these two approximations, we also apply DTC to the algorithm, which will 

provide the minimum generalized cost of all nodes to destination over all time periods. 

Note that, the departure time is fixed for each node, since there is no information 



www.manaraa.com

33 

 

considered in the NOI and CE approaches, thus adaptive DTC is unable to model in these 

two cases. 

4.3 A Hypothetic Network 

The test network is shown in Figure 2 with 6 nodes and 8 directed links. There are 

diversion possibilities at nodes 0, 1 and 2. The study period is from 6:30am to 8:00am. The 

time resolution is 1 second for departures and arrivals at all nodes, and we have 5400 time 

periods in total.  The link travel time distribution is generated through an exogenous 

simulation with the mesoscopic supply simulator of DynaMIT (0).  There are random 

incidents in the network defined as follows: 1) There is at most one incident for any given 

day with probability 0.9; 2) The incident has a positive probability of occurrence on link 0, 

2, 4 and 6, but zero on link 1, 3, 5 and 7; 3) If an incident occurs on a link, the start time can 

be every 10 minutes with equal probability. The 4 possible locations and 9 possible start 

times result in 4×9+1(no incident) = 37 support points. In the support point of no incident 

occurrence in the network, the average OD travel times over the study period are around 

20.5 minutes.  
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Figure 4-1 A hypothetic Network 

For all tests, desired arrival time is 7:30. Denote the vector of unit costs as λ = {α, β, 

γ, ��. The results of POI problem with λ = {0.5,0.15,0.25,1}, and ∆=0 are in the first row, and 

the results of POI problem with λ = {0.5,0,0.25,1}and ∆=0 in the second row. The gray bars 

in the first and second rows are the results with fixed DTC.  They are repeated so that the 

comparison between fixed DTC and adaptive DTC can be made clearly under the two 

different departure penalty scenarios. In all the rows, the first column shows the travel 

time distribution, the second the departure time distribution and the third the arrival time 

distribution. 

Comparing the results of POI with fixed DTC and adaptive DTC with 0.15 unit cost 

departure delay penalty (first row), we find that the arrival time distribution almost 

remain unchanged, while the travel time slightly decrease from fixed DTC. Adaptive DTC 

with departure penalty provide DTC from 7:09 to 7:10, while the non-adaptive departure 

time is fixed at 7:10, which lead to the difference in the travel time distribution. Optimal 
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earliest departure time over all support point, 7:09. 

Comparing the results of POI with 

delay penalty (second row)
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equals to the departure time at 7:10, while for adaptive one is the 

earliest departure time over all support point, 7:09.  

Comparing the results of POI with fixed DTC and adaptive DTC without departure 

(second row), we find that the travel time is more desirable

s from 7:00 to 7:11. The optimal action time 

from the beginning of the study period (6:30) up to the earliest departure

at the origin, any action time before the earliest departure time

result in the same and minimum generalized cost. The arrival time 

is more dispersed than that from the fixed DTC, with more early 

le delay. Comparing the results of adaptive 

and without (row 2) departure penalty, we observe that 

more dispersed without departure penalty, because 

departure delay restrict the DTC close to the action time. More weight on departure delay 

in a more concentrated departure time distribution. Fixed DTC can be also 

case of very large penalty on departure delay.   

Results with departure penalty, λ= (0.5,0.15,0.25
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 Figure 4-2 Results 

We plot departure time distribution

Figure 4-3. We can see the departure time distribution become

larger unit cost is imposed

restricts the range of DTC, 

action time. 

        Departure Penalty = 0           Departure Penalty = 0.05

Figure 4-3 Departure Time Distribution with

Figure 4-4  shows the departure time distribution change with different arrival time 

window. Arrival at destination

unit of ∆ is minute. The results of adaptive DTC with 

(0.5,0,0.25,1) are in the first and second row 

window of 0, 5 and 10 minutes are shown in the first, second and third 

respectively.   
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Results without departure penalty, λ= (0.5,0,0.25

Results of POI With and Without Departure Penalty

time distributions with different departure penalt

We can see the departure time distribution becomes more concentrated 

sed on departure delay. This is because departure delay penalty 

, and the departure time will not spread too

Departure Penalty = 0           Departure Penalty = 0.05           Departure Penalty = 0.15

Departure Time Distribution with Different Departure Penalty
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In these two rows we find the same trend in both without departure delay penalty, which 

with wider arrival time window the departure time distribution is more dispersed. 

Because we relax the arrival requirement, traveler seek more desirable route policy in a 

wider range, which will results in more desirable solutions. However, the trend of 

departure distribution is not predictable when with departure penalty.  

 

 

Departure Distribution from POI without departure penalty, λ = {0.5,0,0.25,1} 

Figure 4-4 Departure Distribution with Different Arrival Time Window 
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connectivity to the destination. The remaining links are generated randomly, respecting 

the maximum in-degree and out-degree. More details on the random network generation 

can be found in (0).  In all the tests, the desired arrival time is 30 (min) with ∆=0, λ = 

{1,0,0.5,2}, and DTCs and routing choices are combined. 

For a given network setting, 10 random networks are generated.  For a given 

network and a given scenario (ADTC with POI, FDTC with POI, DTC under CE or DTC 

under NOI), at each origin node we calculate the optimal generalized cost and the 

corresponding expected travel time, early and late schedule delays at the corresponding 

optimal action time.  We then take expectations of these quantities over all event 

collections and take averages over all nodes. For each network, results are normalized by 

that from fixed DTC with POI, and averages are taken over the 10 random networks. This 

creates one data point in each of the sub-figures in Figures 4-5 and 4-6.  

We also check the standard deviation of generalized cost from each node to the 

destination from adaptive and non-adaptive DTC. The result is normalized by that from 

fixed DTC. Then an average over 10 same setting networks is taken. This create one dot in 

Figure 4-7.   

Figure 4-5 shows the normalized expected generalized cost, travel time, early and 

late schedule delays from POI with adaptive and fixed DTC as functions of the uniform 

standard deviation (STD) of link travel times. We find that normalized generalized cost 
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and travel time decrease as a function of uniform standard deviation, while normalized 

early and late schedule delay are relatively flat but within the range of 0.4 to 0.6 and 0.1 to 

0.3 of that from fixed DTC respectively. This is because POI with fixed DTC can take 

advantage of STD by making adaptive route choice along trip, while adaptive DTC can 

seek lower generalized cost through time dimension. Larger STD provides more 

opportunities of lower link travel time along time and space dimensions. Adaptive route 

choice can take the advantage on the space dimension, while adaptive DTC can take such 

opportunity along time axis. Therefore as the STD increases, the difference from POI with 

adaptive DTC to POI with fixed DTC in generalized cost also increases.  
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Figure 4-5 POI with adaptive DTC compared to POI with fixed DTC as functions of the uniform standard 

deviation of link travel times (with 15 nodes, 30 links, 40 time periods, 20 support points, 6 as the uniform 

mean link travel time, 0.5 as the uniform correlation coefficient of link travel times, 30 as desired arrival 

time, 0 time tolerance, and λ = {0.5,0,0.25,1}) 

Figure 4-6 shows the normalized expected generalized cost, travel time, early and 

late schedule delays from POI fixed DTC verse NI and CE approximation as functions of 

the uniform standard deviation (STD) of link travel times. When the standard deviation is 

large, the link travel times are more dispersed, and thus the expected travel times of 

different paths (routing policies) are more likely to differ. Although they are all combined 

with DTC, none of them are adaptive. We fix the departure time POI manually, while NOI 

and CE approaches are unable to model adaptive DTC due to their inherent algorithm, 

which ignore the information and work with marginal distribution of joint distributed 

travel time distribution. Even though they are all with non-adaptive DTC, we can see the 

normalized generalized cost, travel time and late schedule delay of NI and CE increases as 
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a function of STD, while the early schedule delay less than that from POI fixed DTC. This 

can be explained by the fact that the travel time and late schedule delay have much larger 

weight than the early schedule delay, and in making the tradeoffs the adaptive routing 

algorithm could sacrifice early schedule delay a little bit to make the overall disutility 

function minimized.  This also shows that a more variable network (with the same mean 

link travel time) provides more risk of incurring high travel disutility, but meanwhile also 

more opportunity of exploiting low disutility. As for the results of CE and NOI, we see the 

lines in all four sub-figures are almost overlapped. This is because the two marginal 

distribution CE and NOI work on are no better than the other. We see the approximation 

lines in all four sub-figures are relatively in similar trend. This is because CE and NOI 

works respectively with mean link travel times and marginal distribution of link travel 

times only, thus not sensitive to STD changes.  An adaptive traveler can take the 

opportunity of exploiting lower travel disutilities by adapting to actual network 

conditions. A non-adaptive traveler, on the other hand, assumes an averaged network and 

thus cannot exploit the lower travel times. Also a traveler without help from current 

information predicting future, in another word, take expected value of link travel times at 

any state and also cannot find the lower travel times. Therefore as the STD increases, the 

difference from CE and NOI to POI fixed DTC in generalized cost also increases.  
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Figure 4-6 CE and NOI approximations compared to POI as functions of the uniform standard 

deviation of link travel times (with 15 nodes, 30 links, 40 time periods, 20 support points, 6 as 

the uniform mean link travel time, 0.5 as the uniform correlation coefficient of link travel times, 

30 as desired arrival time, 0 time tolerance, and λ = {0.5,0,0.25,1}) 

Figure 4-7 shows the normalized standard deviation of expected generalized cost 

from POI with adaptive and fixed DTC as functions of the uniform standard deviation 
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(STD) of link travel times. We find that as the standard deviation of link travel time 

increases, the normalized standard deviation of generalized cost from POI with adaptive 

DTC decreases. This is a byproduct of minimizing generalized cost. Decreasing 

generalized cost variance could be viewed as a benefit of adaptive DTC. Adaptive DTC 

can provide less varied generalized cost than fixed DTC with the same POI. The benefit 

also increases when the link travel time is more fluctuated. It is because adaptive DTC 

works better in taking advantage of large variance network to find lower trip disutility. 

Although as the STD of link travel time increase, the absolute value of the generalized cost 

from FDTC and ADTC also increase, the gap between these two are magnified. Therefore, 

the generalized cost of trips are less varied with ADTC than FDTC, because they ranged 

relatively lower and concentrated.  
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Figure 4-7 Variance of POI with adaptive DTC compared to POI with fixed DTC as functions of the 

uniform standard deviation of link travel times (with 15 nodes, 30 links, 40 time periods, 20 support 

points, 6 as the uniform mean link travel time, 0.5 as the uniform correlation coefficient of link travel 

times, 30 as desired arrival time, 0 time tolerance, and λ = {0.5,0,0.25,1}) 
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CHAPTER 5  

CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper we study optimal adaptive DTC in travel reliability problem in stochastic 

time-dependent network. Adaptive DTCs routing combined with route choice under 

perfect online information is designed as a routing policy to achieve more reliable travel in 

terms of less arrival penalty.  The optimal routing policy problem is defined to seek 

minimized generalized cost which is the linear combination of expected travel time, 

schedule delays and departure delay multiplying the value of time. Generic optimality 

conditions are given with generic information access, general link travel time stochastic 

dependencies and generic arrival penalty.  An exact algorithm (Algorithm DOT-REL) is 

designed to solve a special case of the problem with perfect online information (POI) and 

schedule delay as arrival penalty. In this algorithm we first model the adaptive DTC, 

which is a random variable depend on network condition and arrival requirements. A new 

concept, action time is introduced indicated the start time of people making trip decisions. 

Computational test are carried out. It is shown that adaptive DTCs with perfect online 

information result in more reliable travel than fixed DTC with POI and conventional non-

adaptive choices in terms of less travel disutility, especially less expected schedule delay.  

The benefit of adaptive DTCs is an increasing function of network variability in decreasing 

generalized cost. Another benefit of adaptive departure time is decrease the generalized 

cost variance, which is a byproduct of minimizing expected generalized cost. We also 
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study the unit cost departure delay penalty restrict the DTC variability and arrival time 

window wider leads to more dispersed departure time distribution.  

Future directions on reliable adaptive routing policy in stochastic time-dependent 

network can be as follows: 

• It is generally believed that with more information one can make more informed 

decision to get more reliable route choice.  There are however many different 

types of traveler information situations.  Gao and Huang (0) study three 

different partial online information situations for the minimum expected travel 

time routing policy problem.  The same approach could be applied to the 

reliable routing problem. 

• We assume travelers’ decisions will not affect the flow on the network in this 

paper. This will eventually be embedded in an equilibrium traffic assignment 

model where the demand-supply interaction is taken into account. Such a model 

is needed to design and evaluate a traveler information system when the 

penetration of information is high enough so that choices made with the help of 

information affect traffic conditions. 
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APPENDIX  

AN ILLUSTRATIVE EXAMPLE FOR ALGORITHM DOT-REL 

We use an example to illustrate how Algorithm DOT-REL works.  The network in 

Figure 1 has 3 nodes, 3 links and the number of time periods is 2.  The travel time support 

points are also shown, each of which has a probability of 1/2.  We solve the minimum 

expected generalized cost routing policy problem from node a at a desired departure time 

0 to the destination node c.  Assume α=1, β=0.3, γ=0.5, η=2, desired arrival time t*=2, ∆= 0.  

Step 1:  Construct EV(t), t = 0, 1 

 A summary of the results of constructing event collections is as follows. 

  EV(0) = {{C1, C2 }} 

  EV(2) = EV(1) = {{C1}, {C2}} 

Step 2: Compute the time bound 2)*,1max( =∆−−= tKt
)

 

Step 3: Compute Vµ* (j, 2, EV), )2(, EV∈∀∈∀ EVNj  

      Vµ* (jo, 2, EV) = Vµ* (j, 2, EV) 

This step involves solving deterministic static shortest path problems with each 

single support point vr, r = 1,2.  Any classical shortest path algorithm can be used.  In our 

small network, this can be done by observation.  For each node, the minimum disutility, 

and the corresponding expected travel time, early (ESD) and late schedule delay (LSD) 

and the next node are given.  The optimal next nodes at time 1 are the same as time 2, since 

all link travel times are at least 1 and thus no early schedule delay will occur.  It is 
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therefore beneficial to leave the node without waiting and follow the shortest path to node 

c. The results at time 1 are also listed in Table 1.  Note that on both time periods, results for 

origin nodes and intermediates nodes are the same. 

 

 

 

 

Time Link C1 C2 

0 a-b 1 1 

b-c 1 1 

a-c 3 3 

1 a-b 1 1 

b-c 1 2 

a-c 1 1 

 

Figure A-1 The Illustrative Network 

  

a 

b 

c  
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Table A-1 Results at t=2 and t=0 

 

 

 

 

 

 

 

  

t = 2, EV = {C1} 

         

Node 
Disutility 

Travel 

Time 

ES

D 

LS

D 

Next 

Node 

a  3 1 0 1 c 

b 3 1 0 1 c 

c 0 0 0 0 c 

t = 2, EV = {C2} 

a  3 1 0 1 c 

b 6 2 0 2 c 

c 0 0 0 0 c 

t = 1, EV = {C1} 

a  1 1 0 0 c 

b 1 1 0 0 c 

c 0.5 0 1 0 c 

t = 1, EV = {C2} 

a  1 1 0 0 c 

b 4 2 0 1 c 

c 0.5 0 1 0 c 
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Main Loop 

t = 0  

 EV = {C1, C2} 

  EV1’ = {C1}, Pr(EV1’ | EV) = 0.5 

  EV2’ = {C2}, Pr(EV2’ | EV) = 0.5 

  (j, k) = 1 

  temp=1 + Vµ* (b, 0+1, EV1’) P(EV1’ |EV) +Vµ* (b, 0+1, EV2’) P(EV2’ |EV) 

              =1 + 1×0.5+4×0.5=3.5 

   Vµ* (a, 0, {C1, C2}) =3.5, µ* (a, 0, {C1, C2})= node b 

  (j, k) = 3 

  temp= 3 + Vµ* (c, 0+3, EV1’) P(EV1’ | EV)+Vµ* (c, 0+3, EV2’) P(EV2’ | EV) 

= 3 + 2×0.5 + 2×0.5 = 5 > 3.5 

//We do not consider link 2 because we are only interested in decisions at 

node a 

temp = β + Vµ* (ao,0+1,{ C1}) P(EV1’ |EV)+Vµ* (ao,0+1,{ C2}) P(EV2’ |EV)   

=0.3+1×0.5+1×0.5=1.3 < 3.5 

Vµ*(ao, 0, {C1, C2}) =1.3, µ* (ao, 0, {C1, C2})= node a (waiting at the origin) 
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